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ABSTRACT

We study randomness notions given by higher recursion theory, estab-

lishing the relationships Π1
1-randomness ⊂ Π1

1-Martin-Löf randomness ⊂

∆1
1-randomness = ∆1

1-Martin-Löf randomness. We characterize the set

of reals that are low for ∆1
1 randomness as precisely those that are ∆1

1

-traceable. We prove that there is a perfect set of such reals.
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1. Introduction

In recent years the study of algorithmic randomness has been focused almost

exclusively on the arithmetical hierarchy, and with considerable success. In

particular, n-randomness and weak n-randomness were investigated for n < ω.

(Recall here that a real number in 2ω is n-random if it is not in the inter-

section of any nested uniformly Σ0
n sequence (Vn)n∈ω of sets of reals so that

µ(Vn) ≤ 2−n. A real number is weakly n-random if it is not in any Π0
n null set

of reals.) Nevertheless, the conceptualization of algorithmic randomness may

be approached from a different direction. If one accepts the view that a real

number is random if it does not satisfy any “reasonable” collection of properties

of measure zero, then it makes sense to study randomness relative to a natu-

rally defined notion, and investigate the mathematical properties of reals that

are random in the given context. There are two ways of doing this: The first

is to study algorithmic n-randomness by varying the notion of the underlying

measure (recent work of Reimann and Slaman, to appear, points to a significant

link between being n-random and the measure that determines randomness),

while the second is to retain the classical notion of Lebesgue measure and raise

the logical complexity of the sets of reals being considered in the investigation

of randomness. In this paper we adopt the second approach and consider ran-

domness within the realm of second order arithmetic. In the spirit of higher

recursion theory, we call this the theory of higher randomness.

From the point of view of higher recursion theory, a natural extension of the

notion of recursive enumerability for subsets of ω in second order arithmetic is

Π1
1 definability. An extensive theory has been developed by Kleene, Spector,

Gandy, Sacks and others (cf. Sacks [18] for a thorough treatment of the sub-

ject). Martin-Löf [11] was the first to study randomness in the setting of higher

recursion theory, when he showed that the intersection of a sequence of hyper-

arithmetical sets of reals of measure one forms a nonempty Σ1
1 set. For almost

40 years this remained the only contribution to the subject of higher random-

ness, with the marginal exception of Sacks [18] (Chapter IV, Exercise 2.5). He

defined what we call in this paper Π1
1 and ∆1

1 random reals, namely those reals

avoiding Π1
1 and ∆1

1 null sets, respectively. The recent work of Hjorth and Nies

[5] may be regarded as the first systematic study of randomness via effective

descriptive set theory. In this paper we follow the same direction, by examining
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various notions we consider to be central to any reasonable theory of random-

ness. We study them in the setting of higher recursion theory. The motivation is

to understand how the choice of a mathematical definability setting determines

the key properties of random reals within the structure. We first investigate

the analogs of various naturally defined, competing and inequivalent notions of

randomness in first order theory. We show that under some circumstances, their

analogs are equivalent in second order arithmetic. For instance, a real number

x is ∆1
1 random if and only if it is ∆1

1 random in the sense of Martin-Löf tests.

In the case when ωx
1 = ωCK

1 , the equivalence extends to x being Π1
1 random

and being Π1
1 random in the sense of Martin-Löf (Theorem 3.3 and Corollary

3.5; see §3 for the definitions). In general, however, the last two notions do

not coincide (Theorem 3.12). In §4 we study an analog of the notion of a real

number of hyperimmune-free degree, being ∆1
1 dominated. We show that the

set of ∆1
1-dominated reals has measure 1, and that every Π1

1-random real num-

ber is ∆1
1-dominated (Theorem 4.2 and Corollary 4.3). In §5 we study the class

of ∆1
1 and Π1

1-traceable sets as analogs of recursive and r.e. traceable reals. It

turns out that these two classes are identical (of size the continuum, Theorem

5.4), and properly contained in the class of ∆1
1 dominated reals. This is used

to study the class of low for ∆1
1 random reals where it is proved in §6 Theorem

6.2 that a real number is low for ∆1
1 random if and only if it is ∆1

1-traceable.

We end the paper with further comments on higher randomness, one result on

low for Π1
1-randomness, and some open problems.

2. Preliminaries

We assume that the reader is familiar with elements of higher recursion theory,

as presented, for instance, in Sacks [18]. Fix a standard Π0
2 set H ⊆ ω×2ω ×2ω

so that for all x and n ∈ O, there is a unique real number y satisfyingH(n, x, y).

Moreover, if ωx
1 = ωCK

1 , then each real number z ≤h x is Turing reducible to

some y so that H(n, x, y) holds for some n ∈ O. Roughly speaking, y is the

|n|-th Turing jump of x. These y’s are called Hx sets and denoted by Hx
n ’s.

We use the Cantor pairing function, the bijection p : ω2 → ω given by

p(n, s) = (n+s)2+3n+s

2 , and write 〈n, s〉 = p(n, s).

The following results will be used in later sections.



42 C. T. CHONG, A. NIES AND L. YU Isr. J. Math.

Theorem 2.1 (Gandy): If A ⊂ 2ω is a nonempty Σ1
1 set, then there is a real

number x ∈ A so that Ox ≤h O.

Theorem 2.2 (Spector [19] and Gandy [4]): A ⊂ 2ω is Π1
1 if and only if there

is an arithmetical predicate P (x, y) such that

y ∈ A↔ ∃x ≤h yP (x, y).

Theorem 2.3 (Sacks[17]): If x is non-hyperarithmetical, then

µ({y : y ≥h x}) = 0.

Theorem 2.4 (Sacks [18]): The set {x : x ≥h O} is Π1
1. Moreover, x ≥h O if

and only if ωx
1 > ωCK

1 .

A consequence of the last two theorems above is that the set {x : ωx
1 > ωCK

1 }

is a Π1
1 null set.

The ramified analytical hierarchy was introduced by Kleene, and applied by

Fefferman [2] and Cohen [1] to study forcing, a tool that turns out to be powerful

in the investigation of higher randomness theory. We recall some basic facts here

Sacks [18], whose notation we mostly follow:

The ramified analytic hierarchy language L(ωCK
1 , ẋ) contains the following

symbols:

(1) Number variables: j, k,m, n, . . .;

(2) Numerals: 0,1,2,. . . ;

(3) Constant: ẋ;

(4) Ranked set variables: xα, yα, . . . where α < ωCK
1 ;

(5) Unranked set variables: x, y, . . .;

(6) Others symbols include: +, · (times), ′ (successor) and ∈.

Formulas are built in the usual way. A formula ϕ is ranked if all of its set

variables are ranked. Due to its complexity, the language is not codable in a

recursive set but rather in the countable admissible set LωCK

1

.

To code the language in a uniform way, we fix a Π1
1 path O1 through O (by [3]

such a path exists). Then a ranked set variable xα is coded by the number (2, n)

where n ∈ O1 and |n| = α. Other symbols and formulas are coded recursively.

With such a coding, the set of Gödel number of formulas is Π1
1. Moreover, the

set of Gödel numbers of ranked formulas of rank less than α is r.e. uniformly in

the unique notation for α in O1. Hence, there is a recursive function f so that
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Wf(n) is the set of Gödel numbers of the ranked formula of rank less than |n|

when n ∈ O1 ({We}e is, as usual, an effective enumeration of r.e. sets).

One now defines a structure A(ωCK
1 , x), where x is a real number, analogous

to the way Gödel’s L is defined, by induction on the recursive ordinals. Only

at successor stages are new sets defined in the structure. The reals constructed

at a successor stage are arithmetically definable by the reals constructed at

earlier stages. The details may be found in [18]. We define A(ωCK
1 , x) |= ϕ

for a formula ϕ of L(ωCK
1 , ẋ) by allowing the unranked set variables to range

over A(ωCK
1 , x), while the symbol xα will be interpreted as the reals built before

stage α. In fact, the domain of A(ωCK
1 , x) is the set {y : y ≤h x} if and only if

ωx
1 = ωCK

1 (see [18]).

A sentence ϕ of L(ωCK
1 , ẋ) is said to be Σ1

1 if it is ranked, or of the form

∃x1, . . . ,∃xnψ for some formula ψ with no unranked set variables bounded by

a quantifier.

We have the following result which is a model-theoretic version of the Gandy-

Spector Theorem.

Theorem 2.5 (Sacks [18]): The set {(nϕ, x) : ϕ ∈ Σ1
1 ∧ A(ωCK

1 , x) |= ϕ} is Π1
1,

where nϕ is the Gödel number of ϕ. Moreover, for each Π1
1 set A ⊆ 2ω, there is

a formula ϕ ∈ Σ1
1 so that

(1) A(ωCK
1 , x) |= ϕ =⇒ x ∈ A;

(2) if ωx
1 = ωCK

1 , then x ∈ A⇔ A(ωCK
1 , x) |= ϕ.

Note that if ϕ is ranked, then both the sets {x : A(ωCK
1 , x) |= ϕ} (the

Gödel number of ϕ is omitted) and {x : A(ωCK
1 , x) |= ¬ϕ} are Π1

1 and so

∆1
1. Moreover, if A ⊆ 2ω is ∆1

1, then there is a ranked formula ϕ so that

x ∈ A⇔ A(ωCK
1 , x) |= ϕ (see Sacks [18]).

Theorem 2.6 (Sacks [17]): The set {(nϕ, p) : µ({x|A(ωCK
1 , x) |= ϕ}) > p∧ϕ ∈

Σ1
1 ∧ p is a rational number} is Π1

1 where nϕ is the Gödel number of ϕ.

Theorem 2.7 (Sacks [17]): There is a recursive function f : ω×Q → ω so that

for all n which is Gödel number of a ranked formula

(1) f(n, p) is Gödel number of a ranked formula;

(2) The set {x : A(ωCK
1 , x) |= ϕf(n,p)} ⊇ {x : A(ωCK

1 , x) |= ϕn} is open;

(3) µ({x : A(ωCK
1 , x) |= ϕf(n,p)} − {x : A(ωCK

1 , x) |= ϕn}) < p.
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Theorem 2.8 (Sacks [17] and Tanaka [21]): If A is a Π1
1 set of positive measure,

then A contains a hyperarithmetical real.

3. Defining higher randomness notions

A sequence of open sets {Un}n∈ω is a Martin-Löf test (ML-test) if µ(Un) ≤ 2−n

for all n. Given a class of sets of reals Γ (e.g. Π1
1 or ∆1

1), {Un}n∈ω is a Γ-ML

test if {(n, σ) : σ ∈ 2<ω ∧ [σ] ∈ Un} ∈ Γ.

Definition 3.1: Given a class Γ of sets of reals,

(1) A real number x is Γ-random if no Γ null set contains x.

(2) A real number x is Γ-ML-random if x 6∈
⋂

n∈ω Un for any Γ ML-test

{Un}n.

In this paper, we focus on ∆1
1-ML, ∆1

1-, Π1
1-ML and Π1

1-randomness. First we

show that ∆1
1-randomness and ∆1

1-ML-randomness coincide. For this we need

a lemma which will also be used later on. It says that at the hyperarithmetical

level, the analogs of computable randomness and Schnorr randomness are the

same.

Lemma 3.2: Let A be a null ∆1
1 set. Then A ⊆

⋂

Un for some ∆1
1-ML test

{Un}n∈ω such that, in addition, µ(Un) = 2−n for each n.

Proof. If A is a ∆1
1-null set, then by Theorem 2.7 there is a recursive sequence

of ∆1
1 open sets Un for which µ(Un) < 2−n and A ⊆ Un for all n. So {Un}n∈ω

is a ∆1
1-ML-test.

It now suffices to show that the ∆1
1-ML test {Un}n∈ω can be improved to a

∆1
1-ML test {Ûn}n∈ω such that Un ⊆ Ûn and µ(Ûn) = 2−n for each n. For this,

it clearly suffices to show that for each ∆1
1 open set S ⊆ 2ω and each rational

q ≥ µ(S) one can effectively obtain a ∆1
1 open set Ŝ such that S ⊆ Ŝ ⊆ 2ω and

µ(Ŝ) = q. Recall the isometry F between the conull subset of Cantor space 2ω

consisting of the coinfinite sets and the interval I = [0, 1)R: for a coinfinite set

z ⊆ ω, let

F (z) =
∑

i∈z

2−i−1.

Note that under F , the product measure µ turns into Lebesgue measure, and the

lexicographical ordering<L becomes the usual ordering of real number numbers.
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The function f : I → I given by f(x) = µ([0, x) ∪ F (S)) is continuous, non-

decreasing and f(0) ≤ q while f(x) ≥ x for each x ∈ I. Thus there is a least r

such that f(r) = q. Since f ∈ ∆1
1 and the left cut of r is {s ∈ Q : f(s) < q}, the

real number r is ∆1
1, so F (z) = r for some hyperarithmetical coinfinite z ⊆ ω.

Now the open set Ŝ = {y : y <L z} ∪ S is as desired.

Theorem 3.3: The following are equivalent for a real number x.

(i) x is ∆1
1-random;

(ii) x is ∆1
1-ML-random.

Proof. (i) ⇒ (ii): If {Ûn}n∈ω is a ∆1
1-ML-test, then V =

⋂

n∈ω Ûn is a ∆1
1 null

set. So x 6∈ V .

(ii) ⇒ (i): This is an immediate consequence of the previous lemma.

Hjorth and Nies [5] gave a direct proof of the result that the union of all Π1
1

null sets is Π1
1, which may also be obtained as a special case of the more general

result [7, Theorem 1A-2]. We give yet another proof via the ramified analytical

hierarchy, in order to extract more information about the set.

Theorem 3.4 (Kechris [7]; Hjorth and Nies [5]): The largest null Π1
1 set exists.

Proof. Define

P = {(n, x) : n is the Gödel number of a ranked formula
∧

A(ωCK
1 , x) � ϕn(ẋ) ∧ µ({x : A(ωCK

1 , x) � ¬ϕn(ẋ)}) ≥ 1)}

and

Qn = {x : (n, x) ∈ P}.

Define

Q =
⋃

n∈ω

Qn ∪ {x : ωx
1 > ωCK

1 }.

We show that Q is the largest null Π1
1 set. By Theorem 2.6, the sequence

{Qn}n∈ω is a Π1
1-sequence of ∆1

1 sets. Q is Π1
1. Moreover, µ(Qn) = 0 for all

n ∈ ω. Since µ({x : ωCK
1 = ωx

1}) = 1, µ(Q) = 0.

If A is a Π1
1 null set, then, by Theorem 2.5, there is a ranked formula ϕ ∈ Σ1

1

so that if ωx
1 = ωCK

1 , then x ∈ A ⇔ A(ωCK
1 , x) |= ∃yϕ(ẋ, y). So if ωx

1 = ωCK
1 ,

then x ∈ A ⇔ A(ωCK
1 , x) |= ∃yαϕ(ẋ, yα) for some α < ωCK

1 . Since the set

{x : ωx
1 > ωCK

1 } is null, it is easy to see that A ⊆ Q.
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Corollary 3.5: Suppose ωx
1 = ωCK

1 . Then x is ∆1
1-random if and only if x is

Π1
1-ML-random, and this is equivalent to x being Π1

1-random.

Proof. Clearly Π1
1-randomness implies Π1

1-ML-randomness. By Theorem 3.3, it

suffices to show that if x is ∆1
1-random and ωx

1 = ωCK
1 , then x is Π1

1-random.

Assume ωx
1 = ωCK

1 . If x is ∆1
1-random, then x 6∈ Qn for all n. So x 6∈ Q. Hence

x is Π1
1-random.

In contrast to Theorem 3.4, we have the following.

Proposition 3.6: There is no largest null Σ1
1 set.

Proof. Suppose A is the largest null Σ1
1 set. Then by the Tanaka-Sacks Theorem

2.8, there is a ∆1
1 real number x 6∈ A. X = {x} is ∆1

1 and X ∩ A = ∅, a

contradiction.

By Theorem 2.4 and the proof of Theorem 3.4, we have the following result.

Proposition 3.7 (Hjorth and Nies [5]): If x is Π1
1-random, then ωx

1 = ωCK
1 .

Together with Corollary 3.5, the Π1
1-random reals are precisely the ∆1

1-random

reals x that also satisfy ωx
1 = ωCK

1 .

By the Gandy Basis Theorem 2.1, there is a Π1
1-random real number x with

Ox ≤h O.

Theorem 3.8 (Hjorth and Nies [5]): Given any real number x, there is a Π1
1-

ML-random real number y ≥h x.

Combining Theorem 3.8 and Proposition 3.7, we have the following conse-

quence.

Corollary 3.9 (Hjorth and Nies [5]): There is a Π1
1-ML-random real number

that is not Π1
1-random.

We now separate ∆1
1-randomness from Π1

1-ML-randomness, which is needed

for the proof of Theorem 3.12 below. If one views the randomness notions

as operators mapping oracles to classes, the separation can be obtained as a

consequence of Theorem 5.4, Theorem 6.2, and the result of Hjorth and Nies

[5] that every low for Π1
1-ML-random real number is hyperarithmetical. We

now obtain the separation for the plain randomness notions. Recall that in

[5] a Π1
1 version of prefix free Kolmogorov complexity was introduced, denoted
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by K. It was shown that a Theorem analogous to the one of Schnorr holds,

namely: z is Π1
1-ML-random if and only if there is a b ∈ ω such that for each

n, K(z � n) ≥ n− b. So the following result implies the separation.

Theorem 3.10: Let h be a nondecreasing ∆1
1 function such that

lim
n
h(n) = ∞.

Then there is a ∆1
1-random real number z such that ∀∞n K(z � n | n) ≤ h(n).

Here, K(σ | n) is the complexity of σ given n. A number n is encoded

in some effective way by a string (say, the binary expansion). Then K(σ) ≤

K(σ | n) + 2 logn (up to constants), so if we let h(n) = logn then we obtain

K(z � n) ≤ 3 logn.

First we need some preliminaries. A function

f : 2<ω → R+ ∪ {0}

is hyperarithmetical if there is a hyperarithmetical approximation function

g : 2<ω × ω → Q+ ∪ {0}

such that for each σ and n, we have |f(σ)−g(σ, n)| ≤ 2−n. A hyperarithmetical

martingale is a hyperarithmetical function M : 2<ω → R+ ∪ {0} that satisfies

for every σ ∈ 2<ω the martingale equality M(σ0) + M(σ1) = 2M(σ). For a

martingale M and a real number z, let M(z) = supnM(z � n). We say that

the martingale M succeeds on z if the capital it reaches along z is unbounded,

that is, M(z) = ∞. Let S(M) = {z : M succeeds on z}.

Of course, S(M) is a ∆1
1 null set for any hyperarithmetical martingale M .

Here is the converse. This equivalence is an effectivization of Ville’s theorem.

Lemma 3.11: Let A be a ∆1
1 null set. Then there is a hyperarithmetical mar-

tingale MA such that A ⊆ S(M).

Proof. By Lemma 3.2 there is a ∆1
1 ML test {Un}n∈ω such that µ(Un) = 2−n

and A ⊆ Un for all n. Let Mn(σ) = µ(Un ∩ [σ])2|σ|. Then Mn is a hyper-

arithmetical martingale, uniformly in n, and Mn(z) = 1 if z ∈ Un. Moreover,

the start capital Mn(∅) is 2−n. Now let M(σ) =
∑

nMn(σ), then M is as

required.

The proof of Theorem 3.10 is a straightforward computably random reals, see,

for instance [14, Chap. 7]. We build a real number z of slowly growing initial
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segment complexity (in the sense above) on which no Q-valued hyperarithmeti-

cal martingale L succeeds. The martingale MA is not necessarily Q-valued, but

by adaptation of a standard argument due to Schnorr (ibid.), for each hyper-

arithmetical martingale M there is a Q-valued hyperarithmetical martingale M̂

such that M̂(σ) ≥M(σ) for each σ.

In the following theorem we summarize the implications between the various

randomness notions.

Theorem 3.12:

∆1
1(O)-randomness ⇒ Π1

1-randomness

⇒ Π1
1-ML-randomness

⇒ ∆1
1-randomness

⇔ ∆1
1-ML- randomness,

and none of the implications may be reversed.

Proof. ∆1
1(O)-randomness ⇒ Π1

1-randomness: Fix an O-recursive well-ordering

<R on ω of order type ωCK
1 . Then

ωx
1 > ωCK

1 ⇔ ∃S ⊆ ω × ω ∃f ∈ ωω

S ≤T x ∧ ∀n∃m(f(m) = n) ∧ ∀n∀m(S(n,m) ⇐⇒ f(n) <R f(m))).

So the set {x : ωx
1 > ωCK

1 } is Σ1
1(O). By Theorem 2.4, {x : ωx

1 > ωCK
1 } is

∆1
1(O). Note that the sequence {Qn}n∈ω is a Π1

1-sequence, and so is an O-

recursive sequence of ∆1
1(O) sets. So Q =

⋃

n∈ω Qn ∪ {x|ωx
1 > ωCK

1 } is a null

∆1
1(O) set. Hence ∆1

1(O)-randomness ⇒ Π1
1-randomness. By the Gandy Basis

Theorem 2.1, there is a Π1
1-random real number x ≤h O. Now x cannot be

∆1
1(O)-random. Thus the implication cannot be reversed.

Π1
1-randomness ⇒ Π1

1-ML-randomness: It is clear that Π1
1-randomness ⊆ Π1

1-

ML-randomness. By Theorem 3.8, there exists a Π1
1-ML-random real number

x ≥h O. x cannot be Π1
1-random.

Obviously Π1
1-ML-randomness ⇒ ∆1

1-randomness. It follows from the Theo-

rem 3.10 that the implication cannot be reversed.

Finally, ∆1
1-randomness ⇔ ∆1

1-ML-randomness is simply the statement of

Theorem 3.3.

The reader may wonder why we do not study Σ1
1-randomness. In fact, this is

done implicitly—the following proposition says that Σ1
1-randomness coincides

with ∆1
1-randomness.
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Proposition 3.13: If A is Π1
1 and µ(A) = 1, then there is a conull ∆1

1 set

B ⊆ A.

Proof. Suppose A is a Π1
1-set for which µ(A) = 1. Then, by Theorem 2.5,

there is a ranked formula ϕ(ẋ, y) so that for all n ∈ O1, An ⊆ A, where An =

{x : A(ωCK
1 , x) � ∃y|n|ϕ(ẋ, y|n|)}). Since the set {x : ωx

1 > ωCK
1 } is null and

An ⊆ Am for all n <o m in O1, by Theorem 2.5, µ(A) = µ(
⋃

n∈O1
An). Define

R(k, n) if and only if µ(An) > 1 − 2−k. By Theorem 2.6, R is a Π1
1 relation.

By the Π1
1 Uniformitarian Theorem (see [13]), there is a Π1

1 function f : ω → ω

uniformizing R. Since µ(A) = 1, f is a total function. So f is ∆1
1. Hence the

range S of f is ∆1
1. Then there must a recursive ordinal α so that |n| < α for all

n ∈ S (otherwise, O1 would be ∆1
1). Fix the notation n ∈ O1 so that |n| = α.

Define B = An. Then µ(B) = 1 and B ⊆ A.

4. ∆1
1-dominated reals

A real number x is of hyperimmune-free degree if every function Turing reducible

to x is dominated by a recursive function. We study an analog of this notion in

the setting of effective descriptive set theory:

Definition 4.1: A real number x is ∆1
1-dominated if for all functions f : ω → ω

with f ≤h x, there is a hyperarithmetic function g so that g(n) > f(n) for all

n (written as g > f).

The following contrasts with the result that the reals of hyperimmune-free

degree have measure 0 ([10]; see [15] for a short proof).

Theorem 4.2: µ({x : x is ∆1
1-dominated}) = 1.

Proof. We prove that for any rational number p, the measure of

{x : x is ∆1
1-dominated}

is not less than p. We apply a fusion argument to achieve this.

First, we show that for any number e, rational r, notation n ∈ O and ∆1
1 set

A for which p+ r < µ(A), there is a hyperarithmetic function f so that

µ({x : x ∈ A ∧ Φ
Hx

n
e is total =⇒ Φ

Hx
n

e < f}) > p+ r/2.

Since the set {(x, i,m) : Φ
Hx

n
e (i) ↓ =⇒ Φ

Hx

n
e (i) < m} is ∆1

1, there is a ranked

formula ϕ(ẋ, i,m) so that A(ωCK
1 , x) |= ϕ(ẋ, i,m) if and only if Φ

Hx

n
e (i) < m.
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Since A is ∆1
1, by Theorem 2.6, the set

C = {(i,m, k) : ∧µ({x : x ∈ A∧(Φ
Hx

n
e (i) ↓ =⇒ Φ

Hx

n
e (i) < m)}) > µ(A)−r/2k+2}

is ∆1
1. Note that for each k, there is a number m so that (k,m, k) ∈ C. So

there is a ∆1
1 total function f so that for all k, (k, f(k), k) ∈ C. Define

Bk = {x : x ∈ A ∧ (Φ
Hx

n
e (k) ↓ =⇒ Φ

Hx
n

e (k) < f(k))}.

Then the set {(k, x) : x ∈ Bk} is ∆1
1. Moreover, for every k, Bk ⊆ A and

µ(Bk) > µ(A) − r/2k+2. So the set B =
⋂

k Bk is ∆1
1 and

µ(B) ≥ µ(A) −
∑

k≥0

µ(A−Bk) ≥ p+ r −
∑

k≥0

r

2k+2
= p+ r/2.

Moreover, for every x ∈ B, if Φ
Hx

n
e is total, then Φ

Hx
n

e < f . Thus we may

construct an ω-sequence of ∆1
1 sets {B〈e,n〉}e∈ω∧n∈O so that for all e ∈ ω and

n ∈ O,

(1) If 〈e, n〉 > 〈e′, n′〉, then B〈e,n〉 ⊆ B〈e′,n′〉;

(2) µ(B〈e,n〉) > p.

Define D =
⋂

e∈ω∧n∈O B
〈e,n〉. Then D ⊆ {x : x is ∆1

1-dominated} and

µ(D) ≥ p. Moreover, each real number in D is ∆1
1-dominated.

Corollary 4.3: Each Π1
1-random real number is ∆1

1-dominated.

Proof. By the proof of Theorem 4.2, for each e ∈ ω and n ∈ O, the set Ae,n =

{x : ∃f ∈ ∆1
1(Φ

Hx
n

e is total =⇒ Φ
Hx

n
e < f)} has measure 1. Note that Ae,n is

Π1
1. So, by Proposition 3.13, if x is ∆1

1-random, then x 6∈ Ae,n. Now if x is

Π1
1-random, then, by Proposition 3.7, ωCK

1 = ωx
1 . So if g ≤h x, then g = Φ

Hx

n
e

for some e, n ∈ O. Thus each Π1
1-random is ∆1

1-dominated.

Note that Π1
1-randomness cannot be improved to ∆1

1-randomness in Corollary

4.3. This follows from the fact that there exists a ∆1
1-random real number

x ≥h O (see [5]), and from the following proposition which implies that such a

real cannot be ∆1
1-dominated.

Proposition 4.4: {x : x is ∆1
1-dominated } ⊂ {x : ωx

1 = ωCK
1 }.

Proof. If ωx
1 > ωCK

1 , then x ≥h O. Since there is an O-arithmetical enumeration

of ∆1
1 functions {fn}n∈ω, there is a ∆1

1(x) enumeration. Define g(n) = fn(n)+1.

Then g ≤h x. So x is not ∆1
1-dominated. Thus {x : x is ∆1

1-dominated } ⊆

{x : ωx
1 = ωCK

1 }.
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To see that the relation is proper, we apply Cohen forcing developed in [18].

The forcing conditions are elements of 2<ω. A real number is said to be generic

if each Σ1
1-sentence or its negation is forced by a finite initial segment of x.

So generic reals form a comeager set. Feferman (see [2] or [18]) proved that

A(ωCK
1 , x) satisfies ∆1

1-comprehension for any generic real number x. So ωx
1 =

ωCK
1 (see [18]). We claim that no generic real can be ∆1

1-dominated.

Given a real number x, define gx(n) = mn if mn is the n-th bit of x so

that x(mn) = 1. So there is a recursive functional Φ such that Φx = gx

for all x. Hence, there is a ranked (and so Σ1
1) formula ϕ defining gx, i.e.

gx(n) = m ⇔ A(ωCK
1 , x) |= ϕ(ẋ, n,m). For any ∆1

1 function f , there is a

ranked formula ψf defining f , i.e. f(n) = m ⇔ A(ωCK
1 , x) |= ψf (n,m). So

if A(ωCK
1 , x) |= ∀n(f(n) > gẋ(n)), then there is a finite string p ≺ x so that

p 
 ∀n(f(n) > gẋ(n)). This is impossible since one can easily find a condition

q stronger than p so that q 
 ∃n(f(n) < gẋ(n)).

Thus {x|x is ∆1
1-dominated } ⊂ {x|ωx

1 = ωCK
1 }.

One might conjecture that, by analogy to the effective case, the ∆1
1-dominated

reals form a basis for Σ1
1 sets. This is, however, false.

Proposition 4.5: There is a nonempty Σ1
1 set A ⊆ 2ω which does not contain

any ∆1
1-dominated real.

Proof. As in the proof of Proposition 4.4, there is a recursive functional Φ so

that the set A = {x : ∀f ∈ ∆1
1(f 6≥ Φx)} is nonempty. By Theorem 2.2 (the

Spector-Gandy Theorem), A is a nonempty Σ1
1 set.

5. ∆1
1-traceable reals

Next we consider the notions analogous to being r.e. traceable and recursively

traceable in first order randomness theory, both of which are studied in [22, 9]

(see, for instance, [9, Section 2.2] for the formal definition). The corresponding

notions are called Π1
1-traceability and ∆1

1-traceability, respectively. We shall

show that they are in fact equivalent.

Definition 5.1: (i) Let h : ω → ω be a nondecreasing unbounded function

that is hyperarithmetical. A Π1
1-trace/∆1

1-trace with bound h is a uni-

formly Π1
1/uniformly ∆1

1 sequence (Te)e∈ω such that |Te| ≤ h(e) for

each e.
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(ii) A ⊆ ω is Π1
1-traceable/∆1

1-traceable if there is h ∈ ∆1
1 such that, for

each f ≤h A, there is a Π1
1-trace/∆1

1-trace with bound h such that, for

each e, f(e) ∈ Te.

Note that, if (Te)e∈ω is a uniformly ∆1
1 sequence of finite sets, then there

is g ∈ ∆1
1 such that for each e, Dg(e) = Te (where Dn is the n-th finite set

according to some recursive ordering). Thus

g(e) = µn ∀u [u ∈ Dn ↔ u ∈ Te].

In this formulation, the definition of ∆1
1 traceability is very close to that of

recursive traceability. It is not difficult to see that every ∆1
1-traceable real

number is ∆1
1-dominated.

Also notice that the choice of a bound as a witness for traceability is imma-

terial:

Proposition 5.2 (Terwijn and Zambella [22]): Let A be a real number that is

∆1
1 traceable with bound h. Then for any monotone and unbounded ∆1

1 function

h′, A is ∆1
1 traceable with bound h′. The same holds for Π1

1 traceability.

The class of r.e. traceable sets is strictly larger than the class of recursively

traceable sets, since the former contains nonrecursive r.e. sets [9]. In contrast,

we have the following equivalence:

Proposition 5.3: If x is Π1
1-traceable, then x is ∆1

1-traceable.

Proof. We first claim that ωx
1 = ωCK

1 . Otherwise, x ≥h O. So it is sufficient to

show that O is not Π1
1-traceable. Since each Π1

1 set is many-one reducible to O

[16, 5.4 I], there is a uniformly O-recursive list (T e)e∈ω of all Π1
1-traces for the

bound h(e) = e. Define f ≤h O by

f(e) = µn [n 6∈ T e
e ],

then f does not have a Π1
1 trace.

To complete the proof, given f ≤h x, there is a Π1
1 trace (Te)e∈ω such that

f(e) ∈ Te for each e. Then there is a recursive function h : ω2 → ω so that

k ∈ Te if and only if h(k, e) ∈ O. Define a Π1
1(x)-relation R ⊆ ω ×O by

(e, n) ∈ R ⇔ h(e, f(e)) ∈ On,

where On = {m ∈ O : |m| < |n|}, a ∆1
1 set. Note that for each e, there is a

notation n ∈ O so that (e, n) ∈ R. By the Kreisel Uniformization Theorem,
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there is a total Π1
1(x) (and so ∆1

1(x)) function g uniformizing R. Hence the

range S = {n : ∃e[g(e) = n]} of g is a ∆1
1(x) set. Since ωx

1 = ωCK
1 , there exists a

notation n0 ∈ O so that S ⊆ On0
(otherwise the well-founded relation “i <o j”

would be ∆1
1(x)). Define a set T̂e ⊆ Te as follows:

k ∈ T̂e ⇔ h(k, e) ∈ On0
.

By the definition of n0, f(e) ∈ T̂e for all e ∈ ω. Note that the relation n ∈ T̂e

is ∆1
1. Hence (T̂e)e∈ω is a ∆1

1-trace for f . So f is ∆1
1-traceable.

Theorem 5.4: There are 2ℵ0-many ∆1
1-traceable reals.

Proof. We apply Sacks forcing to show this (see [18]). The forcing conditions

are perfect trees coded by ∆1
1 reals. A real number x is Sacks generic if for each

Σ1
1 sentence ϕ, there is a condition T so that x ∈ T and T 
 ϕ or T 
 ¬ϕ. Sacks

proved that the set {(T, nϕ) : ϕ ∈ Σ1
1 ∧T 
 ϕ} is Π1

1. We claim that each Sacks

generic real number is ∆1
1-traceable. Thus there are 2ℵ0-many ∆1

1-traceable

reals.

Suppose x is a Sacks generic real. Since x has minimal hyperdegree (see

[18]), ωCK
1 = ωx

1 . So if f ≤h x, then there is a number e and a notation

n ∈ O so that Φ
Hx

n
e = f . Since the set A = {(y, n, i, j) : Φ

Hy

n
e (i) = j} is

∆1
1, there exists a ranked formula defining A. Since Φ

Hx

n
e is total, by the

definition of Sacks genericity, there is a condition T 
 “Φ
Hẋ

n
e is total”. We

show that for each condition S ⊆ T , there is a condition Q ⊆ S so that

Q 
 “∃f(f ∈ ∆1
1∧∀i(Φ

Hẋ
n

e (i) ∈ Df(i)∧|Df(i)| ≤ 2i+1))”. Then, by the definition

of forcing, there is a ∆1
1 function f so that for all i, Φ

Hx
n

e (i) ∈ Df(i) ∧ |Df(i)| ≤

2i+1.

Since T 
 “Φ
Hẋ

n
e is total”, S 
 “Φ

Hẋ

n
e is total”.

Case (1): There is a condition R ⊆ S so that for all i, j0, j1, for all conditions

P0, P1 ⊆ R, P0 
 Φ
Hẋ

n
e (i) = j0 and P1 
 Φ

Hẋ

n
e (i) = j1 implies j0 = j1. Then

we define f(i) = j if and only if there exists a condition P ⊆ R so that P 


Φ
Hẋ

n
e (i) = j. Then f is a total Π1

1-function and hence ∆1
1. This implies that

R 
 f = Φ
Hẋ

n
e .

Case (2): Otherwise. Define a relation R(P, σ, i, j0, j1, Q0, Q1) if and only if

i ≥ |σ|, j0 6= j1, Q0 ∩ Q1 = ∅ and Qk ⊆ P ∧ Qk 
 Φ
Hẋ

n
e (i) = jk for k ≤ 1.

Obviously R is a Π1
1 relation. By Kreisel’s Uniformization Theorem, there is a
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partial Π1
1 function F : 2ω ×2<ω → (ω)3× (2ω)2 so that R(P, σ, i, j0, j1, Q0, Q1)

for some i, j0, j1, Q0, Q1 if and only if R(P, σ, F (P, σ)). Without loss of gener-

ality, we assume that if P 
 Φ
Hẋ

n
e (i) = ji then for all k ≤ i, P 
 Φ

Hẋ

n
e (k) = jk

for some jk. We do an induction on ω. During the construction, we will define

a Π1
1 sequence of conditions {Pσ}σ∈2<ω .

Step 0. Define P∅ = S.

Step n + 1. For each σ ∈ 2n, define Pσa0 = Q0, Pσa1 = Q1 if F (Pσ, σ) =

(i, j0, j1, Q0, Q1).

Define G(σ) = Pσ. Then G is a total Π1
1 and so ∆1

1 function.

Note that for each σ, G(σa0) ∩G(σa1) = ∅ and if σ � τ then G(σ) ⊇ G(τ).

Define

Q =
⋂

n

⋃

σ∈2n

G(σ).

Then Q is a ∆1
1 perfect set.

Define a function g :
⋃

i∈ω i × 2i+1 → ω so that g(i, σ) = k if σ ∈ 2i+1 and

G(σ) 
 Φ
Hẋ

n
e (i) = k. Hence g is a total Π1

1 and therefore ∆1
1 function. Define

f(i) = j if j is the least number such that Dj = {g(i, σ) : σ ∈ 2i+1}. Then f is

a ∆1
1 function and |Df(i)| ≤ 2i+1 for all i. Since for all i, Q ⊆

⋃

σ∈2n G(σ), it is

easy to see that Q 
 Φ
Hẋ

n
e (i) ∈ Df(i).

So x is ∆1
1-traceable.

6. Lowness for ∆1
1-randomness

Definition 6.1: Given a relativizable class of reals C (for instance, C is the class

of random reals), a real number x is low for C if C = Cx.

For a randomness notion C, we have Cx ⊆ C, and usually one would expect Cx

to be a proper subset of C. Thus being low for C means to be computationally

weak, in the sense that the extra computational power of x does not help to

recognize more reals as nonrandom.

It is shown in [5] that x is low for Π1
1-ML-randomness if and only if x is

hyperarithmetical. The main result of this section is that a real number is low

for ∆1
1-randomness if and only if it is ∆1

1-traceable. This corresponds to the

main result in [9] that a real number A is low for Schnorr randomness if and

only if it is recursively traceable. That result was an extension of the theorem in

[22] that A is low for Schnorr tests if and only if it is recursively traceable. The
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equivalence of (i) and (ii) in the theorem below reveals this parallel phenomenon

in the realm of effective descriptive set theory.

ForD ⊂ 2<ω we let [D]� denote the open set
⋃

{[σ]|σ ∈ D}. We often identify

an open set with the corresponding set of strings closed under extension. We

let Se be the e-th finite subset of 2<ω under a suitable effective enumeration.

Thus Se is a finite set of strings, and [Se]
� =

⋃

σ∈Se
[σ] is then the clopen set

coded by e ∈ ω.

Theorem 6.2: The following are equivalent for a real number x.

(i) x is ∆1
1-traceable (or equivalently, Π1

1 traceable).

(ii) Each ∆1
1(x) null set is contained in a ∆1

1 null set.

(iii) x is low for ∆1
1-randomness.

(iv) Each Π1
1-ML-random set is ∆1

1(x)-random.

Proof. (i) → (ii): Assume that x is ∆1
1-traceable. Let S be a ∆1

1(x) null

set. By Lemma 3.2 relativized to x, S ⊆
⋂

Un for a ∆1
1(x)-ML test {Un}n∈ω

such that µ(Un) = 2−n for each n. There is a function f ≤h x such that

[Sf(〈n,s〉)]
� =: Un,s satisfies Un,s ⊆ Un,s+1, Un =

⋃

s∈ω Un,s, and, moreover,

µ(Un,s) > 2−n(1 − 2−s).

Let T = (Te)e∈ω be a ∆1
1 trace of f . By Proposition 5.2, we may choose T

such that in addition |Te| ≤ e for each e > 0.

We now define a subtrace T̂ of T , i.e., T̂〈n,s〉 ⊆ T〈n,s〉 for each n, s. The

objective is to define open sets Vn via T̂ (in a way to be specified) small enough

to give us a ∆1
1- null set V =

⋂

n Vn, yet large enough as to keep all “relevant”

reals out of T〈n,s〉 − T̂〈n,s〉, so that
⋂

n∈ω Un ⊆ V .

Let T̂〈n,s〉 be the set of e ∈ T〈n,s〉 such that 2−n(1 − 2−s) ≤ µ([Se]
�) ≤ 2−n

and [Se]
� ⊇ [Sd]

� for some d ∈ T̂〈n,s−1〉 (where T̂〈n,−1〉 = ω). Note that

f(〈n, s〉) ∈ T̂〈n,s〉. Let

Vn =
⋃

{

[Se]
�|e ∈ T̂〈n,s〉, s ∈ ω

}

.

Then µ(Vn) ≤ 2−n|T̂〈n,0〉| +
∑

s∈ω 2−s2−n|T̂〈n,s〉|. Since

|T̂〈n,s〉| ≤ |T〈n,s〉| ≤ 〈n, s〉

for 〈n, s〉 6= 0, and 〈n, s〉 has only polynomial growth in n and s, it is clear that

limn

∑

s∈ω 2−s2−n|T̂〈n,s〉| = 0, and hence limn µ(Vn) = 0. Then V =
⋂

n Vn is a

∆1
1-null set and

⋂

Un ⊆ V .

(ii) ⇒ (iii) and (iii) ⇒ (iv) are immediate.
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(iv) ⇒ (i): In [9, Lemma 4.7], it is shown that, if each ML-random set is

Schnorr random relative to x, then x is r.e. traceable. With merely notational

changes, the proof works in the present situation. First some preliminaries.

Recall that K(σ) denotes the Π1
1 version of prefix free Kolmogorov complexity.

For b ∈ ω − {0}, let Rb = [{σ ∈ 2<ω : K(σ) ≤ |σ| − b}]. In [5, Theorem 3.9] it

is shown that (Rb)b∈ω is a universal test for Π1
1-ML-randomness. Thus, by our

hypothesis in (iv), we have C ⊆
⋂

bRb for each ∆1
1(x) null set C.

For k, l ∈ ω define the clopen set

Bk,l =
⋃

{

[τ1k] : τ ∈ 2<ω, |τ | = l
}

,

where 1k is a string of 1’s of length k. Note that µ(Bk,l) = 2−k for all l.

Given σ ∈ 2<ω and a measurable set C ⊆ 2ω, let µσ(C) = µ(C∩[σ])
µ[σ] . For an

open set W let

W |σ =
⋃

{

[τ ] : τ ∈ 2<ω, [στ ] ⊆W
}

.

Now to find a trace for a given function g ≤h x, define the ∆1
1(x)-ML test Ug

by stipulating that

Ug
n =

⋃

k>n

Bk,g(k).

Hence by assumption
⋂

n U
g
n ⊆

⋂

b∈ω Rb. Thus V = R3 contains
⋂

n U
g
n and

µ(V ) < 1/4. We may assume throughout that g(k) ≥ k for every k because

from a trace for g(k) + k one can obtain a trace for g with the same bound. By

[9, Lemma 4.4], there exist σ and n such that µσ(Ug
n−V ) = 0 and µσ(V ) < 1/4.

As Ug
0 ⊇ Ug

1 ⊇ · · · , we can choose σ and n with the additional property n ≥ |σ|.

Hence for each k > n, we have g(k) ≥ k > n ≥ |σ| and hence g(k) ≥ |σ|.

Let Ṽ = V |σ, let g̃(k) = max{0, g(k)− |σ|}, and

Tk =
{

l : µ(Bk,l − Ṽ ) < 2−(l+3)
}

.

Note that for each l ∈ ω, if l ≥ |σ| then Bk,l|σ = Bk,l−|σ|. So since g(k) ≥ |σ|,

Ug
n|σ =

⋃

k>n

Bk,g(k)|σ =
⋃

k>n

Bk,g(k)−|σ| = U g̃
n ,

and we obtain µ(U g̃
n − Ṽ ) = µσ(Ug

n − V ) = 0. Hence g̃(k) ∈ Tk for all k > n.

Since Ṽ is a Π1
1 open set, it is evident that T is a Π1

1 set of integers. A trace

for g is obtained as follows

Gk =







{l + |σ||l ∈ Tk} if k > n;

{g(k)} if k ≤ n.
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We now show thatG is a trace for g, i.e. for all k ∈ ω, g(k) ∈ Gk. If k ≤ n then

this holds by definition of Gk. Thus assume k > n. Then g(k) > k > n > |σ|,

so g̃(k) = g(k) − |σ| so g(k) = g̃(k) + |σ|. As k > n, g̃(k) ∈ Tk and hence

g(k) ∈ Gk.

Clearly G is Π1
1; so it remains to show that |Gk| is hyperarithmetically

bounded, independently of g. As |Gk| = |Tk| for k > n and |Gk| = 1 for

k ≤ n, this is a consequence of Lemma 4.8 of [9], reproduced below:

Lemma 6.3 ([9]): If Ṽ is a measurable set with µ(Ṽ ) < 1/4, and Tk =

{l : µ(Bk,l − Ṽ ) < 2−(l+3)}, then for k ≥ 1, |Tk| < 2kk.

Corollary 6.4: There exists a ∆1
1-dominated real number which is not ∆1

1-

traceable.

Proof. By Theorem 4.2, ∆1
1-dominated reals form a measure 1 set but, by The-

orem 6.2, the set of ∆1
1-traceable reals form a null set, being disjoint from the

set of ∆1
1-random reals.

7. Concluding remarks

A real number x is said to be Π1
1-random cuppable, or random cuppable

for short, if x ⊕ y ≥h O for all Π1
1-random reals y. It is known [5] that if x

is low for Π1
1-randomness then ωCK

1 = ωx
1 . Harrington, Nies and Slaman have

obtained a further result on lowness for Π1
1-randomness. We include a proof of

this result here.

Theorem 7.1 (with Harrington and Slaman): A real x is low for Π1
1-randomness

if and only if x is low for ∆1
1-randomness and not random cuppable.

Proof. For the direction from left to right, suppose x is low for Π1
1-randomness,

that is, each Π1
1-random real number is Π1

1(x)-random. Since x 6≥h O, the Π1
1(x)

set {y : y ⊕ x ≥h O} is null, by relativizing Theorems 2.3 and 2.4. Thus x is

not random cuppable. To see that x is low for ∆1
1-randomness, suppose for

a contradiction that y is a ∆1
1-random real number that is not ∆1

1(x)-random.

Thus there is a ∆1
1(x)-null set A containing y. By the main result in Martin-Löf

[11], the null set B =
⋃

{C ⊂ 2ω : µ(C) = 0∧C is ∆1
1} is Π1

1. Since y ∈ A−B,

A − B is a nonempty Σ1
1(x) set. By the Gandy Basis Theorem 2.1 relative to

x, there is a real number z ∈ A − B so that ωz⊕x
1 = ωx

1 = ωCK
1 . Then z is
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∆1
1-random but not ∆1

1(x)-random, so by Corollary 3.5 and its relativization to

x, z is Π1
1-random but not Π1

1(x)-random, a contradiction.

For the other direction, suppose x is low for ∆1
1-randomness and not random

cuppable. Then x 6≥h O. Suppose z is a Π1
1-random real. By the proof of

Theorem 3.4 relative to x, the largest Π1
1(x) null set Q(x) is a union of countably

many ∆1
1(x) null sets Qn(x) and the Π1

1(x) null set {y : y ⊕ x ≥h O}. Since x

is low for ∆1
1-randomness, z 6∈

⋃

n Qn(x). Since x is non-Π1
1-random cuppable,

z ⊕ x 6≥h O. So z is Π1
1(x)-random.

The following question remains open.

Question 7.2: Is there a real number x that is low for Π1
1-randomness but not

hyperarithmetical?

Reimann and Slaman have shown that if x is not 1-random relative to any

continuous measure, then x is hyperarithmetical. In an analogy, one can ask:

Question 7.3: Is there a characterization of the reals x that are not Π1
1-ML-

random, or the ones that are not ∆1
1-random relative to any continuous mea-

sure?

One may also study higher genericity theory as has been done for classical

genericity theory ([23] and [20]). The third author has proved that lowness for

Π1
1-genericity is the same as being hyperarithmetical and there exists a non-

hyperarithmetical real number that is low for ∆1
1-genericity.

The results of the previous sections show that several of the key notions of

randomness, demonstrably different in first order theory, coalesce into equivalent

ones in effective descriptive set theory. Thus finer distinctions are revealed only

at the arithmetic level. It is tempting to venture beyond Π1
1 and ∆1

1 and explore

the landscape of definable randomness in the analytical hierarchy. However,

this will lead us very quickly to statements undecidable in ZFC. Assuming

projective determinacy (PD), Kechris [6] has proved several measure and

category-theoretic results in the analytical hierarchy in parallel with results for

the Π1
1 case in [17].1 We believe that most of the results proved in the previous

sections remain valid upon replacing Π1
1 with Π1

2n+1 or Σ1
2n under PD. However,

it seems that PD is not a correct tool to use for analyzing the analytical sets

1 Since one may apply PD to obtain some dynamic properties of Π1
2n+1 and Σ1

2n
-sets,

such as scales (see [12]).
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since it provides limited recursion-theoretic information. For example, PD does

not give a ramified analytical hierarchy with properties similar to what one has

for Π1
1 sets. Instead, some deep results in inner model theory are necessary

for this. Inner model theory (say Q-theory [8]) has been applied by some to

study descriptive set theory in order to obtain powerful characterizations of

analytical sets (under large cardinal assumptions, see [8])2. The results are of

recursion-theoretic interest, and this area is worth further investigation.
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